Lectures on Choquet's Theorem

A well written, readable and easily accessible introduction to "Choquet theory", which treats the representation of elements of a compact convex set as integral averages over extreme points of the set. The interest in this material arises both from its appealing geometrical nature as well...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Phelps, Robert R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:2nd ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1757
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • The Krein-Milman theorem as an integral representation theorem
  • Application of the Krein-Milman theorem to completely monotonic functions
  • Choquet's theorem: The metrizable case.
  • The Choquet-Bishop-de Leeuw existence theorem
  • Applications to Rainwater's and Haydon's theorems
  • A new setting: The Choquet boundary
  • Applications of the Choquet boundary to resolvents
  • The Choquet boundary for uniform algebras
  • The Choquet boundary and approximation theory
  • Uniqueness of representing measures.
  • Properties of the resultant map
  • Application to invariant and ergodic measures
  • A method for extending the representation theorems: Caps
  • A different method for extending the representation theorems
  • Orderings and dilations of measures
  • Additional Topics.