|
|
|
|
LEADER |
05735nam a2200469 4500 |
001 |
978-3-540-48775-3 |
003 |
DE-He213 |
005 |
20190617102023.0 |
007 |
cr nn 008mamaa |
008 |
121227s1999 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540487753
|9 978-3-540-48775-3
|
024 |
7 |
|
|a 10.1007/3-540-48775-1
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a Q334-342
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Knowledge Acquisition, Modeling and Management
|h [electronic resource] :
|b 11th European Workshop, EKAW'99, Dagstuhl Castle, Germany, May 26-29, 1999, Proceedings /
|c edited by Rudi Studer.
|
250 |
|
|
|a 1st ed. 1999.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 1999.
|
300 |
|
|
|a XII, 412 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence ;
|v 1621
|
505 |
0 |
|
|a Invited Papers -- Reengineering and Knowledge Management -- Knowledge Navigation in Networked Digital Libraries -- Long Papers -- Towards Brokering Problem-Solving Knowledge on the Internet -- TERMINAE: A Linguistics-Based Tool for the Building of a Domain Ontology -- Applications of Knowledge Acquisition in Experimental Software Engineering -- Acquiring and Structuring Web Content with Knowledge Level Models -- A Knowledge-Based News Server Supporting Ontology-Driven Story Enrichment and Knowledge Retrieval -- Modeling Information Sources for Information Integration -- Ontological Reengineering for Reuse -- Formally Verifying Dynamic Properties of Knowledge Based Systems -- Integration of Behavioural Requirements Specification within Knowledge Engineering -- Towards an Ontology for Substances and Related Actions -- Use of Formal Ontologies to Support Error Checking in Specifications -- The Ontologies of Semantic and Transfer Links -- Distributed Problem Solving Environment Dedicated to DNA Sequence Annotation -- Knowledge Acquisition from Multiple Experts Based on Semantics of Concepts -- Acquiring Expert Knowledge for the Design of Conceptual Information Systems -- A Constraint-Based Approach to the Description of Competence -- Short Papers -- Holism and Incremental Knowledge Acquisition -- Indexing Problem Solving Methods for Reuse -- Software Methodologies at Risk -- Knowledge acquisition of predicate argument structures from technical texts using Machine Learning: the system Asium -- An Interoperative Environment for Developing Expert Systems -- On the Use of Meaningful Names in Knowledge-Based Systems -- FMR: An Incremental Knowledge Acquisition System for Fuzzy Domains -- Applying SeSKA to Sisyphus III -- Describing Similar Control Flows for Families of Problem-Solving Methods -- Meta Knowledge for Extending Diagnostic Consultation to Critiquing Systems -- Exploitation of XML for Corporate Knowledge Management -- An Oligo-Agents System with Shared Responsibilities for Knowledge Management -- Veri-KoMoD: Verification of Knowledge Models in the Mechanical Design Field -- A Flexible Framework for Uncertain Expertise -- Elicitation of Operational Track Grids.
|
520 |
|
|
|a Past, Present, and Future of Knowledge Acquisition This book contains the proceedings of the 11th European Workshop on Kno- edge Acquisition, Modeling, and Management (EKAW '99), held at Dagstuhl Castle (Germany) in May of 1999. This continuity and the high number of s- missions re?ect the mature status of the knowledge acquisition community. Knowledge Acquisition started as an attempt to solve the main bottleneck in developing expert systems (now called knowledge-based systems): Acquiring knowledgefromahumanexpert. Variousmethodsandtoolshavebeendeveloped to improve this process. These approaches signi?cantly reduced the cost of - veloping knowledge-based systems. However, these systems often only partially ful?lled the taskthey weredevelopedfor andmaintenanceremainedanunsolved problem. This required a paradigm shift that views the development process of knowledge-based systems as a modeling activity. Instead of simply transf- ring human knowledge into machine-readable code, building a knowledge-based system is now viewed as a modeling activity. A so-called knowledge model is constructed in interaction with users and experts. This model need not nec- sarily re?ect the already available human expertise. Instead it should provide a knowledgelevelcharacterizationof the knowledgethat is requiredby the system to solve the application task. Economy and quality in system development and maintainability are achieved by reusable problem-solving methods and onto- gies. The former describe the reasoning process of the knowledge-based system (i. e. , the algorithms it uses) and the latter describe the knowledge structures it uses (i. e. , the data structures). Both abstract from speci?c application and domain speci?c circumstances to enable knowledge reuse.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
1 |
4 |
|a Artificial Intelligence.
|0 http://scigraph.springernature.com/things/product-market-codes/I21000
|
700 |
1 |
|
|a Studer, Rudi.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662207949
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540660446
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence ;
|v 1621
|
856 |
4 |
0 |
|u https://doi.org/10.1007/3-540-48775-1
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-LNC
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Computer Science (Springer-11645)
|