Quantum Probability and Spectral Analysis of Graphs

This is the first book to comprehensively cover the quantum probabilistic approach to spectral analysis of graphs. This approach has been developed by the authors and has become an interesting research area in applied mathematics and physics. The book can be used as a concise introduction to quantum...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hora, Akihito (Συγγραφέας), Obata, Nobuaki (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Theoretical and Mathematical Physics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02880nam a22004815i 4500
001 978-3-540-48863-7
003 DE-He213
005 20151204173051.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540488637  |9 978-3-540-48863-7 
024 7 |a 10.1007/3-540-48863-4  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Hora, Akihito.  |e author. 
245 1 0 |a Quantum Probability and Spectral Analysis of Graphs  |h [electronic resource] /  |c by Akihito Hora, Nobuaki Obata. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XVIII, 371 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical and Mathematical Physics,  |x 0172-5998 
505 0 |a Quantum Probability and Orthogonal Polynomials -- Adjacency Matrices -- Distance-Regular Graphs -- Homogeneous Trees -- Hamming Graphs -- Johnson Graphs -- Regular Graphs -- Comb Graphs and Star Graphs -- The Symmetric Group and Young Diagrams -- The Limit Shape of Young Diagrams -- Central Limit Theorem for the Plancherel Measures of the Symmetric Groups -- Deformation of Kerov's Central Limit Theorem. 
520 |a This is the first book to comprehensively cover the quantum probabilistic approach to spectral analysis of graphs. This approach has been developed by the authors and has become an interesting research area in applied mathematics and physics. The book can be used as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, which have been recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding. Among the topics discussed along the way are: quantum probability and orthogonal polynomials; asymptotic spectral theory (quantum central limit theorems) for adjacency matrices; the method of quantum decomposition; notions of independence and structure of graphs; and asymptotic representation theory of the symmetric groups. 
650 0 |a Physics. 
650 0 |a Algebra. 
650 0 |a Quantum physics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Algebra. 
650 2 4 |a Quantum Physics. 
700 1 |a Obata, Nobuaki.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540488620 
830 0 |a Theoretical and Mathematical Physics,  |x 0172-5998 
856 4 0 |u http://dx.doi.org/10.1007/3-540-48863-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)