Mathematical Aspects of Classical and Celestial Mechanics Third Edition /

In this book we describe the basic principles, problems, and methods of cl- sical mechanics. Our main attention is devoted to the mathematical side of the subject. Although the physical background of the models considered here and the applied aspects of the phenomena studied in this book are explore...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arnold, Vladimir I. (Συγγραφέας), Kozlov, Valery V. (Συγγραφέας), Neishtadt, Anatoly I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Encyclopaedia of Mathematical Sciences, 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03723nam a22005655i 4500
001 978-3-540-48926-9
003 DE-He213
005 20151204165650.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540489269  |9 978-3-540-48926-9 
024 7 |a 10.1007/978-3-540-48926-9  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Arnold, Vladimir I.  |e author. 
245 1 0 |a Mathematical Aspects of Classical and Celestial Mechanics  |h [electronic resource] :  |b Third Edition /  |c by Vladimir I. Arnold, Valery V. Kozlov, Anatoly I. Neishtadt. 
246 3 |a Dynamical Systems III 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIII, 505 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 3 
505 0 |a Basic Principles of Classical Mechanics -- The n-Body Problem -- Symmetry Groups and Order Reduction -- Variational Principles and Methods -- Integrable Systems and Integration Methods -- Perturbation Theory for Integrable Systems -- Non-Integrable Systems -- Theory of Small Oscillations -- Tensor Invariants of Equations of Dynamics. 
520 |a In this book we describe the basic principles, problems, and methods of cl- sical mechanics. Our main attention is devoted to the mathematical side of the subject. Although the physical background of the models considered here and the applied aspects of the phenomena studied in this book are explored to a considerably lesser extent, we have tried to set forth ?rst and foremost the “working” apparatus of classical mechanics. This apparatus is contained mainly in Chapters 1, 3, 5, 6, and 8. Chapter 1 is devoted to the basic mathematical models of classical - chanics that are usually used for describing the motion of real mechanical systems. Special attention is given to the study of motion with constraints and to the problems of realization of constraints in dynamics. In Chapter 3 we discuss symmetry groups of mechanical systems and the corresponding conservation laws. We also expound various aspects of ord- reduction theory for systems with symmetries, which is often used in appli- tions. Chapter 4 is devoted to variational principles and methods of classical mechanics. They allow one, in particular, to obtain non-trivial results on the existence of periodic trajectories. Special attention is given to the case where the region of possible motion has a non-empty boundary. Applications of the variational methods to the theory of stability of motion are indicated. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Kozlov, Valery V.  |e author. 
700 1 |a Neishtadt, Anatoly I.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540282464 
830 0 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 3 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-48926-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)