Typed Lambda Calculi and Applications 4th International Conference, TLCA'99, L'Aquila, Italy, April 7-9, 1999, Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Girard, Jean-Yves (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Computer Science, 1581
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Demonstration
  • The Coordination Language Facility and Applications
  • AnnoDomini in Practice: A Type-Theoretic Approach to the Year 2000 Problem
  • Contributions
  • Modules in Non-commutative Logic
  • Elementary Complexity and Geometry of Interaction
  • Quantitative Semantics Revisited
  • Total Functionals and Well-Founded Strategies
  • Counting a Type's Principal Inhabitants
  • Useless-Code Detection and Elimination for PCF with Algebraic Data Types
  • Every Unsolvable ? Term has a Decoration
  • Game Semantics for Untyped ???-Calculus
  • A Finite Axiomatization of Inductive-Recursive Definitions
  • Lambda Definability with Sums via Grothendieck Logical Relations
  • Explicitly Typed ??-Calculus for Polymorphism and Call-by-Value
  • Soundness of the Logical Framework for Its Typed Operational Semantic
  • Logical Predicates for Intuitionistic Linear Type Theories
  • Polarized Proof-Nets: Proof-Nets for LC
  • Call-by-Push-Value: A Subsuming Paradigm
  • A Study of Abramsky's Linear Chemical Abstract Machine
  • Resource Interpretations, Bunched Implications and the ??-Calculus (Preliminary Version)
  • A Curry-Howard Isomorphism for Compilation and Program Execution
  • Natural Deduction for Intuitionistic Non-commutative Linear Logic
  • A Logic for Abstract Data Types as Existential Types
  • Characterising Explicit Substitutions which Preserve Termination
  • Explicit Environments
  • Consequences of Jacopini's Theorem: Consistent Equalities and Equations
  • Strong Normalisation of Cut-Elimination in Classical Logic
  • Pure Type Systems with Subtyping.