Computational Learning Theory 4th European Conference, EuroCOLT'99 Nordkirchen, Germany, March 29-31, 1999 Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Fischer, Paul (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Simon, Hans U. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Artificial Intelligence ; 1572
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Lectures
  • Theoretical Views of Boosting
  • Open Theoretical Questions in Reinforcement Learning
  • Learning from Random Examples
  • A Geometric Approach to Leveraging Weak Learners
  • Query by Committee, Linear Separation and Random Walks
  • Hardness Results for Neural Network Approximation Problems
  • Learning from Queries and Counterexamples
  • Learnability of Quantified Formulas
  • Learning Multiplicity Automata from Smallest Counterexamples
  • Exact Learning when Irrelevant Variables Abound
  • An Application of Codes to Attribute-Efficient Learning
  • Learning Range Restricted Horn Expressions
  • Reinforcement Learning
  • On the Asymptotic Behavior of a Constant Stepsize Temporal-Difference Learning Algorithm
  • On-line Learning and Expert Advice
  • Direct and Indirect Algorithms for On-line Learning of Disjunctions
  • Averaging Expert Predictions
  • Teaching and Learning
  • On Teaching and Learning Intersection-Closed Concept Classes
  • Inductive Inference
  • Avoiding Coding Tricks by Hyperrobust Learning
  • Mind Change Complexity of Learning Logic Programs
  • Statistical Theory of Learning and Pattern Recognition
  • Regularized Principal Manifolds
  • Distribution-Dependent Vapnik-Chervonenkis Bounds
  • Lower Bounds on the Rate of Convergence of Nonparametric Pattern Recognition
  • On Error Estimation for the Partitioning Classification Rule
  • Margin Distribution Bounds on Generalization
  • Generalization Performance of Classifiers in Terms of Observed Covering Numbers
  • Entropy Numbers, Operators and Support Vector Kernels.