Neural Networks: Tricks of the Trade

It is our belief that researchers and practitioners acquire, through experience and word-of-mouth, techniques and heuristics that help them successfully apply neural networks to di cult real world problems. Often these \tricks" are theo- tically well motivated. Sometimes they are the result of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Orr, Genevieve B. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Müller, Klaus-Robert (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1998.
Έκδοση:1st ed. 1998.
Σειρά:Lecture Notes in Computer Science, 1524
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04994nam a2200577 4500
001 978-3-540-49430-0
003 DE-He213
005 20191021222516.0
007 cr nn 008mamaa
008 121227s1998 gw | s |||| 0|eng d
020 |a 9783540494300  |9 978-3-540-49430-0 
024 7 |a 10.1007/3-540-49430-8  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM037000  |2 bisacsh 
072 7 |a UY  |2 thema 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Neural Networks: Tricks of the Trade  |h [electronic resource] /  |c edited by Genevieve B. Orr, Klaus-Robert Müller. 
250 |a 1st ed. 1998. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1998. 
300 |a VIII, 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 1524 
505 0 |a Speeding Learning -- Efficient BackProp -- Regularization Techniques to Improve Generalization -- Early Stopping - But When? -- A Simple Trick for Estimating the Weight Decay Parameter -- Controlling the hyperparameter search in MacKay's Bayesian neural network framework -- Adaptive Regularization in Neural Network Modeling -- Large Ensemble Averaging -- Improving Network Models and Algorithmic Tricks -- Square Unit Augmented Radially Extended Multilayer Perceptrons -- A Dozen Tricks with Multitask Learning -- Solving the Ill-Conditioning in Neural Network Learning -- Centering Neural Network Gradient Factors -- Avoiding roundoff error in backpropagating derivatives -- Representing and Incorporating Prior Knowledge in Neural Network Training -- Transformation Invariance in Pattern Recognition - Tangent Distance and Tangent Propagation -- Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the Newton -- Neural Network Classification and Prior Class Probabilities -- Applying Divide and Conquer to Large Scale Pattern Recognition Tasks -- Tricks for Time Series -- Forecasting the Economy with Neural Nets: A Survey of Challenges and Solutions -- How to Train Neural Networks. 
520 |a It is our belief that researchers and practitioners acquire, through experience and word-of-mouth, techniques and heuristics that help them successfully apply neural networks to di cult real world problems. Often these \tricks" are theo- tically well motivated. Sometimes they are the result of trial and error. However, their most common link is that they are usually hidden in people's heads or in the back pages of space-constrained conference papers. As a result newcomers to the eld waste much time wondering why their networks train so slowly and perform so poorly. This book is an outgrowth of a 1996 NIPS workshop called Tricks of the Trade whose goal was to begin the process of gathering and documenting these tricks. The interest that the workshop generated motivated us to expand our collection and compile it into this book. Although we have no doubt that there are many tricks we have missed, we hope that what we have included will prove to be useful, particularly to those who are relatively new to the eld. Each chapter contains one or more tricks presented by a given author (or authors). We have attempted to group related chapters into sections, though we recognize that the di erent sections are far from disjoint. Some of the chapters (e.g., 1, 13, 17) contain entire systems of tricks that are far more general than the category they have been placed in. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Microprocessors. 
650 0 |a Pattern recognition. 
650 0 |a Computational complexity. 
650 1 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Processor Architectures.  |0 http://scigraph.springernature.com/things/product-market-codes/I13014 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
700 1 |a Orr, Genevieve B.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Müller, Klaus-Robert.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540653110 
776 0 8 |i Printed edition:  |z 9783662198131 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 1524 
856 4 0 |u https://doi.org/10.1007/3-540-49430-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)