Neural Networks: Tricks of the Trade

It is our belief that researchers and practitioners acquire, through experience and word-of-mouth, techniques and heuristics that help them successfully apply neural networks to di cult real world problems. Often these \tricks" are theo- tically well motivated. Sometimes they are the result of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Orr, Genevieve B. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Müller, Klaus-Robert (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1998.
Έκδοση:1st ed. 1998.
Σειρά:Lecture Notes in Computer Science, 1524
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Speeding Learning
  • Efficient BackProp
  • Regularization Techniques to Improve Generalization
  • Early Stopping - But When?
  • A Simple Trick for Estimating the Weight Decay Parameter
  • Controlling the hyperparameter search in MacKay's Bayesian neural network framework
  • Adaptive Regularization in Neural Network Modeling
  • Large Ensemble Averaging
  • Improving Network Models and Algorithmic Tricks
  • Square Unit Augmented Radially Extended Multilayer Perceptrons
  • A Dozen Tricks with Multitask Learning
  • Solving the Ill-Conditioning in Neural Network Learning
  • Centering Neural Network Gradient Factors
  • Avoiding roundoff error in backpropagating derivatives
  • Representing and Incorporating Prior Knowledge in Neural Network Training
  • Transformation Invariance in Pattern Recognition - Tangent Distance and Tangent Propagation
  • Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the Newton
  • Neural Network Classification and Prior Class Probabilities
  • Applying Divide and Conquer to Large Scale Pattern Recognition Tasks
  • Tricks for Time Series
  • Forecasting the Economy with Neural Nets: A Survey of Challenges and Solutions
  • How to Train Neural Networks.