Realizations of Polylogarithms

Classically, higher logarithms appear as multivalued functions on the projective line. Today they can be interpreted as entries of the period matrix of a certain variation of Hodge structure, itself called the "polylogarithm". The aim of the book is to document the sheaf-theoretical founda...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wildeshaus, Jörg (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1650
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02880nam a2200469 4500
001 978-3-540-49728-8
003 DE-He213
005 20190619115726.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540497288  |9 978-3-540-49728-8 
024 7 |a 10.1007/BFb0093051  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Wildeshaus, Jörg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Realizations of Polylogarithms  |h [electronic resource] /  |c by Jörg Wildeshaus. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a XII, 344 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1650 
505 0 |a Mixed structures on fundamental groups -- The canonical construction of mixed sheaves on mixed shimura varieties -- Polylogarithmic extensions on mixed shimura varieties. Part I: Construction and basic properties -- Polylogarithmic extensions on mixed shimura varieties. part II: The classifical polylogarithm -- Polygogarithmic extensions on mixed shimura varieties. Part III: The elliptic polygogarithm. 
520 |a Classically, higher logarithms appear as multivalued functions on the projective line. Today they can be interpreted as entries of the period matrix of a certain variation of Hodge structure, itself called the "polylogarithm". The aim of the book is to document the sheaf-theoretical foundations of the field of polylogarithms. Earlier, partly unpublished results and constructions of Beilinson, Deligne, and Levin on the classical and elliptic polylog are generalized to the context of Shimura varieties. The reader is expected to have a sound background in algebraic geometry. Large parts of the book are expository, and intended as a reference for the working mathematician. Where a self-contained exposition was not possible, the author gives references in order to make the material accessible for advanced graduate students. 
650 0 |a Number theory. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662162996 
776 0 8 |i Printed edition:  |z 9783540624608 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1650 
856 4 0 |u https://doi.org/10.1007/BFb0093051  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)