Dynamic Pricing and Automated Resource Allocation for Complex Information Services Reinforcement Learning and Combinatorial Auctions /

Many firms provide their customers with online information products which require limited resources such as server capacity. This book develops allocation mechanisms that aim to ensure an efficient resource allocation in modern IT-services. Recent methods of artificial intelligence, such as neural n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schwind, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Economics and Mathematical Systems, 589
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03372nam a22005295i 4500
001 978-3-540-68003-1
003 DE-He213
005 20151204142847.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540680031  |9 978-3-540-68003-1 
024 7 |a 10.1007/978-3-540-68003-1  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Schwind, Michael.  |e author. 
245 1 0 |a Dynamic Pricing and Automated Resource Allocation for Complex Information Services  |h [electronic resource] :  |b Reinforcement Learning and Combinatorial Auctions /  |c by Michael Schwind. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XIV, 295 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 589 
505 0 |a Dynamic Pricing and Automated Resource Allocation -- Empirical Assessment of Dynamic Pricing Preference -- Reinforcement Learning for Dynamic Pricing and Automated Resource Allocation -- Combinatorial Auctions for Resource Allocation -- Dynamic Pricing and Automated Resource Allocation Using Combinatorial Auctions -- Comparison of Reinforcement Learning and Combinatorial Auctions. 
520 |a Many firms provide their customers with online information products which require limited resources such as server capacity. This book develops allocation mechanisms that aim to ensure an efficient resource allocation in modern IT-services. Recent methods of artificial intelligence, such as neural networks and reinforcement learning, and nature-oriented optimization methods, such as genetic algorithms and simulated annealing, are advanced and applied to allocation processes in distributed IT-infrastructures, e.g. grid systems. The author presents two methods, both of which using the users’ willingness-to-pay to control the allocation process: The first approach uses a yield management method that tries to learn an optimal acceptance strategy for resource requests. The second method is a combinatorial auction able to deal with resource complementarities. The author finally generates a method to calculate dynamic resource prices, marking an important step towards the industrialization of grid systems. 
650 0 |a Mathematics. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Computer organization. 
650 0 |a Artificial intelligence. 
650 0 |a Economic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a IT in Business. 
650 2 4 |a Computer Systems Organization and Communication Networks. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540680024 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 589 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-68003-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)