Applied Graph Theory in Computer Vision and Pattern Recognition

This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kandel, Abraham (Επιμελητής έκδοσης), Bunke, Horst (Επιμελητής έκδοσης), Last, Mark (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Studies in Computational Intelligence, 52
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Applied Graph Theory for Low Level Image Processing and Segmentation
  • Multiresolution Image Segmentations in Graph Pyramids
  • A Graphical Model Framework for Image Segmentation
  • Digital Topologies on Graphs
  • Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition
  • How and Why Pattern Recognition and Computer Vision Applications Use Graphs
  • Efficient Algorithms on Trees and Graphs with Unique Node Labels
  • A Generic Graph Distance Measure Based on Multivalent Matchings
  • Learning from Supervised Graphs
  • Special Applications
  • Graph-Based and Structural Methods for Fingerprint Classification
  • Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal Event Detection
  • Clustering of Web Documents Using Graph Representations.