50 Years of Integer Programming 1958-2008 From the Early Years to the State-of-the-Art /

In 1958, Ralph E. Gomory transformed the field of integer programming when he published a short paper that described his cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In January of 2008, to commemo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Jünger, Michael (Επιμελητής έκδοσης), Liebling, Thomas M. (Επιμελητής έκδοσης), Naddef, Denis (Επιμελητής έκδοσης), Nemhauser, George L. (Επιμελητής έκδοσης), Pulleyblank, William R. (Επιμελητής έκδοσης), Reinelt, Gerhard (Επιμελητής έκδοσης), Rinaldi, Giovanni (Επιμελητής έκδοσης), Wolsey, Laurence A. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • I The Early Years
  • Solution of a Large-Scale Traveling-Salesman Problem
  • The Hungarian Method for the Assignment Problem
  • Integral Boundary Points of Convex Polyhedra
  • Outline of an Algorithm for Integer Solutions to Linear Programs An Algorithm for the Mixed Integer Problem
  • An Automatic Method for Solving Discrete Programming Problems
  • Integer Programming: Methods, Uses, Computation
  • Matroid Partition
  • Reducibility Among Combinatorial Problems
  • Lagrangian Relaxation for Integer Programming
  • Disjunctive Programming
  • II From the Beginnings to the State-of-the-Art
  • Polyhedral Approaches to Mixed Integer Linear Programming
  • Fifty-Plus Years of Combinatorial Integer Programming
  • Reformulation and Decomposition of Integer Programs
  • III Current Topics
  • Integer Programming and Algorithmic Geometry of Numbers
  • Nonlinear Integer Programming
  • Mixed Integer Programming Computation
  • Symmetry in Integer Linear Programming
  • Semidefinite Relaxations for Integer Programming
  • The Group-Theoretic Approach in Mixed Integer Programming.