Knots and Links in Three-Dimensional Flows

The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ghrist, Robert W. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Holmes, Philip J. (http://id.loc.gov/vocabulary/relators/aut), Sullivan, Michael C. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1654
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02616nam a2200529 4500
001 978-3-540-68347-6
003 DE-He213
005 20191027201244.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540683476  |9 978-3-540-68347-6 
024 7 |a 10.1007/BFb0093387  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBMS  |2 thema 
072 7 |a PBPH  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Ghrist, Robert W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Knots and Links in Three-Dimensional Flows  |h [electronic resource] /  |c by Robert W. Ghrist, Philip J. Holmes, Michael C. Sullivan. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a X, 214 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1654 
505 0 |a Prerequisites -- Templates -- Template theory -- Bifurcations -- Invariants -- Concluding remarks. 
520 |a The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
700 1 |a Holmes, Philip J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sullivan, Michael C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662198964 
776 0 8 |i Printed edition:  |z 9783540626282 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1654 
856 4 0 |u https://doi.org/10.1007/BFb0093387  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)