Computability of Julia Sets

Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Braverman, Mark (Συγγραφέας), Yampolsky, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Algorithms and Computation in Mathematics, 23
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03009nam a22005535i 4500
001 978-3-540-68547-0
003 DE-He213
005 20151204144144.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540685470  |9 978-3-540-68547-0 
024 7 |a 10.1007/978-3-540-68547-0  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a PBKS  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 518.1  |2 23 
100 1 |a Braverman, Mark.  |e author. 
245 1 0 |a Computability of Julia Sets  |h [electronic resource] /  |c by Mark Braverman, Michael Yampolsky. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIII, 151 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 23 
505 0 |a to Computability -- Dynamics of Rational Mappings -- First Examples -- Positive Results -- Negative Results -- Computability versus Topological Properties of Julia Sets. 
520 |a Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems. 
650 0 |a Mathematics. 
650 0 |a Computer programming. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algorithms. 
650 2 4 |a Algebra. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Mathematics of Computing. 
700 1 |a Yampolsky, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540685463 
830 0 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 23 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-68547-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)