Mathematical Models of Financial Derivatives

Mathematical Models of Financial Derivatives is a textbook on the theory behind modeling derivatives using the financial engineering approach, focussing on the martingale pricing principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the eq...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kwok, Yue-Kuen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Έκδοση:2.
Σειρά:Springer Finance,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03845nam a22006015i 4500
001 978-3-540-68688-0
003 DE-He213
005 20151204153433.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540686880  |9 978-3-540-68688-0 
024 7 |a 10.1007/978-3-540-68688-0  |2 doi 
040 |d GrThAP 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a TEC009060  |2 bisacsh 
082 0 4 |a 003.3  |2 23 
100 1 |a Kwok, Yue-Kuen.  |e author. 
245 1 0 |a Mathematical Models of Financial Derivatives  |h [electronic resource] /  |c by Yue-Kuen Kwok. 
250 |a 2. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XV, 530 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Finance,  |x 1616-0533 
505 0 |a to Derivative Instruments -- Financial Economics and Stochastic Calculus -- Option Pricing Models: Black–Scholes–Merton Formulation and Martingale Pricing Theory -- Path Dependent Options -- American Options -- Numerical Schemes for Pricing Options -- Interest Rate Models and Bond Pricing -- Interest Rate Derivatives: Bond Options, LIBOR and Swap Products. 
520 |a Mathematical Models of Financial Derivatives is a textbook on the theory behind modeling derivatives using the financial engineering approach, focussing on the martingale pricing principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analyzed, emphasizing on the aspects of pricing, hedging and their risk management. Starting from the renowned Black-Scholes-Merton formulation of option pricing model, readers are guided through the text on the new advances on the state-of-the-art derivative pricing models and interest rate models. Both analytic techniques and numerical methods for solving various types of derivative pricing models are emphasized. The second edition presents a substantial revision of the first edition. The continuous-time martingale pricing theory is motivated through analysis of the underlying financial economics principles within a discrete-time framework. A large collection of closed-form formulas of various forms of exotic equity and fixed income derivatives are documented. The most recent research results and methodologies are made accessible to readers through the extensive set of exercises at the end of each chapter. Yue-Kuen Kwok is Professor of Mathematics at Hong Kong University of Science and Technology. He is the author of over 80 research papers and several books, including Applied Complex Variables. He is an associate editor of Journal of Economic Dynamics and Control and Asia-Pacific Financial Markets. 
650 0 |a Mathematics. 
650 0 |a Finance. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 0 |a Public finance. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Public Economics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Finance, general. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540422884 
830 0 |a Springer Finance,  |x 1616-0533 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-68688-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)