Advances in Differential Evolution

Differential evolution is arguably one of the hottest topics in today's computational intelligence research. This book seeks to present a comprehensive study of the state of the art in this technology and also directions for future research. The fourteen chapters of this book have been written...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Chakraborty, Uday K. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Computational Intelligence, 143
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04523nam a22004935i 4500
001 978-3-540-68830-3
003 DE-He213
005 20151204164225.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540688303  |9 978-3-540-68830-3 
024 7 |a 10.1007/978-3-540-68830-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Advances in Differential Evolution  |h [electronic resource] /  |c edited by Uday K. Chakraborty. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a X, 339 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 143 
505 0 |a Differential Evolution Research – Trends and Open Questions -- Eliminating Drift Bias from the Differential Evolution Algorithm -- An Analysis of the Control Parameters’ Adaptation in DE -- Stopping Criteria for Differential Evolution in Constrained Single-Objective Optimization -- Constrained Optimization by ? Constrained Differential Evolution with Dynamic ?-Level Control -- Opposition-Based Differential Evolution -- Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art -- A Review of Major Application Areas of Differential Evolution -- The Differential Evolution Algorithm as Applied to Array Antennas and Imaging -- Applications of Differential Evolution in Power System Optimization -- Self-adaptive Differential Evolution Using Chaotic Local Search for Solving Power Economic Dispatch with Nonsmooth Fuel Cost Function -- An Adaptive Differential Evolution Algorithm with Opposition-Based Mechanisms, Applied to the Tuning of a Chess Program -- Differential Evolution for the Offline and Online Optimization of Fed-Batch Fermentation Processes -- Worst Case Analysis of Control Law for Re-entry Vehicles Using Hybrid Differential Evolution. 
520 |a Differential evolution is arguably one of the hottest topics in today's computational intelligence research. This book seeks to present a comprehensive study of the state of the art in this technology and also directions for future research. The fourteen chapters of this book have been written by leading experts in the area. The first seven chapters focus on algorithm design, while the last seven describe real-world applications. Chapter 1 introduces the basic differential evolution (DE) algorithm and presents a broad overview of the field. Chapter 2 presents a new, rotationally invariant DE algorithm. The role of self-adaptive control parameters in DE is investigated in Chapter 3. Chapters 4 and 5 address constrained optimization; the former develops suitable stopping conditions for the DE run, and the latter presents an improved DE algorithm for problems with very small feasible regions. A novel DE algorithm, based on the concept of "opposite" points, is the topic of Chapter 6. Chapter 7 provides a survey of multi-objective differential evolution algorithms. A review of the major application areas of differential evolution is presented in Chapter 8. Chapter 9 discusses the application of differential evolution in two important areas of applied electromagnetics. Chapters 10 and 11 focus on applications of hybrid DE algorithms to problems in power system optimization. Chapter 12 applies the DE algorithm to computer chess. The use of DE to solve a problem in bioprocess engineering is discussed in Chapter 13. Chapter 14 describes the application of hybrid differential evolution to a problem in control engineering. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Chakraborty, Uday K.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540688273 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 143 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-68830-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)