Logical and Relational Learning

This textbook covers logical and relational learning in depth, and hence provides an introduction to inductive logic programming (ILP), multirelational data mining (MRDM) and (statistical) relational learning (SRL). These subfields of data mining and machine learning are concerned with the analysis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Raedt, Luc De (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Cognitive Technologies,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03350nam a22005535i 4500
001 978-3-540-68856-3
003 DE-He213
005 20151204172638.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540688563  |9 978-3-540-68856-3 
024 7 |a 10.1007/978-3-540-68856-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a UL  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Logical and Relational Learning  |h [electronic resource] /  |c edited by Luc De Raedt. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XV, 387 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 1611-2482 
505 0 |a An Introduction to Logic -- An Introduction to Learning and Search -- Representations for Mining and Learning -- Generality and Logical Entailment -- The Upgrading Story -- Inducing Theories -- Probabilistic Logic Learning -- Kernels and Distances for Structured Data -- Computational Aspects of Logical and Relational Learning -- Lessons Learned. 
520 |a This textbook covers logical and relational learning in depth, and hence provides an introduction to inductive logic programming (ILP), multirelational data mining (MRDM) and (statistical) relational learning (SRL). These subfields of data mining and machine learning are concerned with the analysis of complex and structured data sets that arise in numerous applications, such as bio- and chemoinformatics, network analysis, Web mining, natural language processing, within the rich representations offered by relational databases and computational logic. The author introduces the machine learning and representational foundations of the field and explains some important techniques in detail by using some of the classic case studies centered around well-known logical and relational systems. The book is suitable for use in graduate courses and should be of interest to graduate students and researchers in computer science, databases and artificial intelligence, as well as practitioners of data mining and machine learning. It contains numerous figures and exercises, and slides are available for many chapters. 
650 0 |a Computer science. 
650 0 |a Software engineering. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Information Systems Applications (incl. Internet). 
700 1 |a Raedt, Luc De.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540200406 
830 0 |a Cognitive Technologies,  |x 1611-2482 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-68856-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)