Stability of Queueing Networks École d'Été de Probabilités de Saint-Flour XXXVI - 2006 /

Queueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. Thi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bramson, Maury (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 1950
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02703nam a22005295i 4500
001 978-3-540-68896-9
003 DE-He213
005 20151204184239.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540688969  |9 978-3-540-68896-9 
024 7 |a 10.1007/978-3-540-68896-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Bramson, Maury.  |e author. 
245 1 0 |a Stability of Queueing Networks  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XXXVI - 2006 /  |c by Maury Bramson. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a VIII, 198 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1950 
505 0 |a The Classical Networks -- Instability of Subcritical Queueing Networks -- Stability of Queueing Networks -- Applications and Some Further Theory. 
520 |a Queueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. This volume presents a summary of such work. Emphasis is placed on the use of fluid models in showing stability, and on examples of queueing networks that are unstable even when the arrival rate is less than the service rate. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Alice Guionnet and Steffen Lauritzen. 
650 0 |a Mathematics. 
650 0 |a Computer organization. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Computer Systems Organization and Communication Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540688952 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1950 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-68896-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)