Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments ECAI'96 Workshop LDAIS, Budapest, Hungary, August 13, 1996, ICMAS'96 Workshop LIOME, Kyoto, Japan, December 10, 1996 Selected Papers /

The complexity of systems studied in distributed artificial intelligence (DAI), such as multi-agent systems, often makes it extremely difficult or even impossible to correctly and completely specify their behavioral repertoires and dynamics. There is broad agreement that such systems should be equip...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Weiß, Gerhard (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Artificial Intelligence ; 1221
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04153nam a2200517 4500
001 978-3-540-69050-4
003 DE-He213
005 20191028102237.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540690504  |9 978-3-540-69050-4 
024 7 |a 10.1007/3-540-62934-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments  |h [electronic resource] :  |b ECAI'96 Workshop LDAIS, Budapest, Hungary, August 13, 1996, ICMAS'96 Workshop LIOME, Kyoto, Japan, December 10, 1996 Selected Papers /  |c edited by Gerhard Weiß. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a XII, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 1221 
505 0 |a Reader's guide -- Challenges for machine learning in cooperative information systems -- A modular approach to multi-agent reinforcement learning -- Learning real team solutions -- Learning by linear anticipation in multi-agent systems -- Learning coordinated behavior in a continuous environment -- Multi-agent learning with the success-story algorithm -- On the collaborative object search team: a formulation -- Evolution of coordination as a metaphor for learning in multi-agent systems -- Correlating internal parameters and external performance: Learning Soccer Agents -- Learning agents' reliability through Bayesian Conditioning: A simulation experiment -- A study of organizational learning in multiagents systems -- Cooperative Case-based Reasoning -- Contract-net-based learning in a user-adaptive interface agency -- The communication of inductive inferences -- Addressee Learning and Message Interception for communication load reduction in multiple robot environments -- Learning and communication in Multi-Agent Systems -- Investigating the effects of explicit epistemology on a Distributed learning system. 
520 |a The complexity of systems studied in distributed artificial intelligence (DAI), such as multi-agent systems, often makes it extremely difficult or even impossible to correctly and completely specify their behavioral repertoires and dynamics. There is broad agreement that such systems should be equipped with the ability to learn in order to improve their future performance autonomously. The interdisciplinary cooperation of researchers from DAI and machine learning (ML) has established a new and very active area of research and development enjoying steadily increasing attention from both communities. This state-of-the-art report documents current and ongoing developments in the area of learning in DAI systems. It is indispensable reading for anybody active in the area and will serve as a valuable source of information. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Programming languages (Electronic computers). 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Simulation and Modeling.  |0 http://scigraph.springernature.com/things/product-market-codes/I19000 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 http://scigraph.springernature.com/things/product-market-codes/I14037 
700 1 |a Weiß, Gerhard.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662172223 
776 0 8 |i Printed edition:  |z 9783540629344 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 1221 
856 4 0 |u https://doi.org/10.1007/3-540-62934-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)