Theory of a Higher-Order Sturm-Liouville Equation

This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order St...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kozlov, Vladimir (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Maz'ya, Vladimir (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1659
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02910nam a2200481 4500
001 978-3-540-69122-8
003 DE-He213
005 20191027201555.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540691228  |9 978-3-540-69122-8 
024 7 |a 10.1007/BFb0094700  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Kozlov, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Theory of a Higher-Order Sturm-Liouville Equation  |h [electronic resource] /  |c by Vladimir Kozlov, Vladimir Maz'ya. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a XII, 144 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1659 
505 0 |a Basic equation with constant coefficients -- The operator M(? t ) on a semiaxis and an interval -- The operator M(? t )??0 with constant ?0 -- Green's function for the operator M(? t )??(t) -- Uniqueness and solvability properties of the operator M(? t ??(t) -- Properties of M(? t ??(t) under various assumptions about ?(t) -- Asymptotics of solutions at infinity -- Application to ordinary differential equations with operator coefficients. 
520 |a This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
700 1 |a Maz'ya, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662191798 
776 0 8 |i Printed edition:  |z 9783540630654 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1659 
856 4 0 |u https://doi.org/10.1007/BFb0094700  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)