Spaces of Homotopy Self-Equivalences - A Survey

This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calcul...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rutter, John W. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1662
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preliminaries
  • Building blocks
  • Representations: homology and homotopy
  • Surfaces
  • Generators: surface, modular groups
  • Manifolds of dimension three or more
  • ?*(X) not finitely generated
  • Localization
  • ?*(X) finitely presented, nilpotent
  • L-R duality
  • Cellular/homology complexes: methods
  • Cellular, homology complexes: calculations
  • Non-1-connected postnikov: methods
  • Homotopy systems, chain complexes
  • Non-1-connected spaces: calculations
  • Whitehead torsion, simple homotopy
  • Unions and products
  • Group theoretic properties
  • Homotopy type, homotopy groups
  • Homotopy automorphisms of H-spaces
  • Fibre and equivariant HE's
  • Applications.