Spaces of Homotopy Self-Equivalences - A Survey
This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calcul...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
1997.
|
Έκδοση: | 1st ed. 1997. |
Σειρά: | Lecture Notes in Mathematics,
1662 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preliminaries
- Building blocks
- Representations: homology and homotopy
- Surfaces
- Generators: surface, modular groups
- Manifolds of dimension three or more
- ?*(X) not finitely generated
- Localization
- ?*(X) finitely presented, nilpotent
- L-R duality
- Cellular/homology complexes: methods
- Cellular, homology complexes: calculations
- Non-1-connected postnikov: methods
- Homotopy systems, chain complexes
- Non-1-connected spaces: calculations
- Whitehead torsion, simple homotopy
- Unions and products
- Group theoretic properties
- Homotopy type, homotopy groups
- Homotopy automorphisms of H-spaces
- Fibre and equivariant HE's
- Applications.