Symplectic Manifolds with no Kaehler structure

This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated d...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tralle, Alesky (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Oprea, John (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1661
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02918nam a2200505 4500
001 978-3-540-69145-7
003 DE-He213
005 20191024141809.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540691457  |9 978-3-540-69145-7 
024 7 |a 10.1007/BFb0092608  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Tralle, Alesky.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Symplectic Manifolds with no Kaehler structure  |h [electronic resource] /  |c by Alesky Tralle, John Oprea. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a VIII, 208 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1661 
505 0 |a The starting point: Homotopy properties of kähler manifolds -- Nilmanifolds -- Solvmanifolds -- The examples of McDuff -- Symplectic structures in total spaces of bundles -- Survey. 
520 |a This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level. 
650 0 |a Differential geometry. 
650 0 |a Algebraic topology. 
650 1 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
700 1 |a Oprea, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662194874 
776 0 8 |i Printed edition:  |z 9783540631057 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1661 
856 4 0 |u https://doi.org/10.1007/BFb0092608  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)