Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds

Kobayashi-hyperbolic manifolds are an object of active research in complex geometry. In this monograph the author presents a coherent exposition of recent results on complete characterization of Kobayashi-hyperbolic manifolds with high-dimensional groups of holomorphic automorphisms. These classific...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Isaev, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1902
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02320nam a22004455i 4500
001 978-3-540-69153-2
003 DE-He213
005 20151204162949.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540691532  |9 978-3-540-69153-2 
024 7 |a 10.1007/3-540-69151-0  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 |a Isaev, Alexander.  |e author. 
245 1 0 |a Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds  |h [electronic resource] /  |c by Alexander Isaev. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a VIII, 144 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1902 
505 0 |a The Homogeneous Case -- The Case d(M) = n2 -- The Case d(M) = n2 - 1, n ? 3 -- The Case of (2,3)-Manifolds -- Proper Actions. 
520 |a Kobayashi-hyperbolic manifolds are an object of active research in complex geometry. In this monograph the author presents a coherent exposition of recent results on complete characterization of Kobayashi-hyperbolic manifolds with high-dimensional groups of holomorphic automorphisms. These classification results can be viewed as complex-geometric analogues of those known for Riemannian manifolds with high-dimensional isotropy groups, that were extensively studied in the 1950s-70s. The common feature of the Kobayashi-hyperbolic and Riemannian cases is the properness of the actions of the holomorphic automorphism group and the isometry group on respective manifolds. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540691518 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1902 
856 4 0 |u http://dx.doi.org/10.1007/3-540-69151-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)