Perturbation Theory for the Schrödinger Operator with a Periodic Potential

The book is devoted to perturbation theory for the Schrödinger operator with a periodic potential, describing motion of a particle in bulk matter. The Bloch eigenvalues of the operator are densely situated in a high energy region, so regular perturbation theory is ineffective. The mathematical diff...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Karpeshina, Yulia E. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1663
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02993nam a2200493 4500
001 978-3-540-69156-3
003 DE-He213
005 20191024141912.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540691563  |9 978-3-540-69156-3 
024 7 |a 10.1007/BFb0094264  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Karpeshina, Yulia E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Perturbation Theory for the Schrödinger Operator with a Periodic Potential  |h [electronic resource] /  |c by Yulia E. Karpeshina. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a CCCLXIV, 356 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1663 
505 0 |a Perturbation theory for a polyharmonic operator in the case of 2l>n -- Perturbation theory for the polyharmonic operator in the case 4l>n+1 -- Perturbation theory for Schrödinger operator with a periodic potential -- The interaction of a free wave with a semi-bounded crystal. 
520 |a The book is devoted to perturbation theory for the Schrödinger operator with a periodic potential, describing motion of a particle in bulk matter. The Bloch eigenvalues of the operator are densely situated in a high energy region, so regular perturbation theory is ineffective. The mathematical difficulties have a physical nature - a complicated picture of diffraction inside the crystal. The author develops a new mathematical approach to this problem. It provides mathematical physicists with important results for this operator and a new technique that can be effective for other problems. The semiperiodic Schrödinger operator, describing a crystal with a surface, is studied. Solid-body theory specialists can find asymptotic formulae, which are necessary for calculating many physical values. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662212660 
776 0 8 |i Printed edition:  |z 9783540631361 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1663 
856 4 0 |u https://doi.org/10.1007/BFb0094264  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)