Ideal Spaces
Ideal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete a...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
1997.
|
Έκδοση: | 1st ed. 1997. |
Σειρά: | Lecture Notes in Mathematics,
1664 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Περίληψη: | Ideal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete and self-contained introduction into the general theory of ideal spaces. Some emphasis is put on spaces of vector-valued functions and on the constructive viewpoint of the theory (without the axiom of choice). The reader should have basic knowledge in functional analysis and measure theory. |
---|---|
Φυσική περιγραφή: | VI, 150 p. online resource. |
ISBN: | 9783540691921 |
ISSN: | 0075-8434 ; |
DOI: | 10.1007/BFb0093548 |