|
|
|
|
LEADER |
02914nam a2200517 4500 |
001 |
978-3-540-69192-1 |
003 |
DE-He213 |
005 |
20191024141857.0 |
007 |
cr nn 008mamaa |
008 |
121227s1997 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540691921
|9 978-3-540-69192-1
|
024 |
7 |
|
|a 10.1007/BFb0093548
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA319-329.9
|
072 |
|
7 |
|a PBKF
|2 bicssc
|
072 |
|
7 |
|a MAT037000
|2 bisacsh
|
072 |
|
7 |
|a PBKF
|2 thema
|
082 |
0 |
4 |
|a 515.7
|2 23
|
100 |
1 |
|
|a Väth, Martin.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Ideal Spaces
|h [electronic resource] /
|c by Martin Väth.
|
250 |
|
|
|a 1st ed. 1997.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 1997.
|
300 |
|
|
|a VI, 150 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1664
|
505 |
0 |
|
|a Introduction -- Basic definitions and properties -- Ideal spaces with additional properties -- Ideal spaces on product measures and calculus -- Operators and applications -- Appendix: Some measurability results -- Sup-measurable operator functions -- Majorising principles for measurable operator functions -- A generalization of a theorem of Luxemburg-Gribanov -- References -- Index.
|
520 |
|
|
|a Ideal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete and self-contained introduction into the general theory of ideal spaces. Some emphasis is put on spaces of vector-valued functions and on the constructive viewpoint of the theory (without the axiom of choice). The reader should have basic knowledge in functional analysis and measure theory.
|
650 |
|
0 |
|a Functional analysis.
|
650 |
|
0 |
|a Functions of real variables.
|
650 |
|
0 |
|a Mathematical logic.
|
650 |
1 |
4 |
|a Functional Analysis.
|0 http://scigraph.springernature.com/things/product-market-codes/M12066
|
650 |
2 |
4 |
|a Real Functions.
|0 http://scigraph.springernature.com/things/product-market-codes/M12171
|
650 |
2 |
4 |
|a Mathematical Logic and Foundations.
|0 http://scigraph.springernature.com/things/product-market-codes/M24005
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662191323
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540631606
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1664
|
856 |
4 |
0 |
|u https://doi.org/10.1007/BFb0093548
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-LNM
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|