Ideal Spaces

Ideal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Väth, Martin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1664
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Basic definitions and properties
  • Ideal spaces with additional properties
  • Ideal spaces on product measures and calculus
  • Operators and applications
  • Appendix: Some measurability results
  • Sup-measurable operator functions
  • Majorising principles for measurable operator functions
  • A generalization of a theorem of Luxemburg-Gribanov
  • References
  • Index.