Self-Adaptive Heuristics for Evolutionary Computation

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adapt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kramer, Oliver (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Computational Intelligence, 147
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03223nam a22004935i 4500
001 978-3-540-69281-2
003 DE-He213
005 20151204153853.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540692812  |9 978-3-540-69281-2 
024 7 |a 10.1007/978-3-540-69281-2  |2 doi 
040 |d GrThAP 
050 4 |a TA345-345.5 
072 7 |a UGC  |2 bicssc 
072 7 |a COM007000  |2 bisacsh 
082 0 4 |a 620.00420285  |2 23 
100 1 |a Kramer, Oliver.  |e author. 
245 1 0 |a Self-Adaptive Heuristics for Evolutionary Computation  |h [electronic resource] /  |c by Oliver Kramer. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XII, 182 p. 39 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 147 
505 0 |a I: Foundations of Evolutionary Computation -- Evolutionary Algorithms -- Self-Adaptation -- II: Self-Adaptive Operators -- Biased Mutation for Evolution Strategies -- Self-Adaptive Inversion Mutation -- Self-Adaptive Crossover -- III: Constraint Handling -- Constraint Handling Heuristics for Evolution Strategies -- IV: Summary -- Summary and Conclusion -- V: Appendix -- Continuous Benchmark Functions -- Discrete Benchmark Functions. 
520 |a Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer-aided engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540692805 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 147 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-69281-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)