Self-Adaptive Heuristics for Evolutionary Computation
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adapt...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2008.
|
Σειρά: | Studies in Computational Intelligence,
147 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- I: Foundations of Evolutionary Computation
- Evolutionary Algorithms
- Self-Adaptation
- II: Self-Adaptive Operators
- Biased Mutation for Evolution Strategies
- Self-Adaptive Inversion Mutation
- Self-Adaptive Crossover
- III: Constraint Handling
- Constraint Handling Heuristics for Evolution Strategies
- IV: Summary
- Summary and Conclusion
- V: Appendix
- Continuous Benchmark Functions
- Discrete Benchmark Functions.