Optimal Transportation Networks Models and Theory /

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bernot, Marc (Συγγραφέας), Caselles, Vicent (Συγγραφέας), Morel, Jean-Michel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1955
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03803nam a22006495i 4500
001 978-3-540-69315-4
003 DE-He213
005 20151204182504.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540693154  |9 978-3-540-69315-4 
024 7 |a 10.1007/978-3-540-69315-4  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Bernot, Marc.  |e author. 
245 1 0 |a Optimal Transportation Networks  |h [electronic resource] :  |b Models and Theory /  |c by Marc Bernot, Vicent Caselles, Jean-Michel Morel. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a X, 200 p. 58 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1955 
505 0 |a Introduction: The Models -- The Mathematical Models -- Traffic Plans -- The Structure of Optimal Traffic Plans -- Operations on Traffic Plans -- Traffic Plans and Distances between Measures -- The Tree Structure of Optimal Traffic Plans and their Approximation -- Interior and Boundary Regularity -- The Equivalence of Various Models -- Irrigability and Dimension -- The Landscape of an Optimal Pattern -- The Gilbert-Steiner Problem -- Dirac to Lebesgue Segment: A Case Study -- Application: Embedded Irrigation Networks -- Open Problems. 
520 |a The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Management science. 
650 0 |a Engineering economics. 
650 0 |a Engineering economy. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Engineering Economics, Organization, Logistics, Marketing. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Caselles, Vicent.  |e author. 
700 1 |a Morel, Jean-Michel.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540693147 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1955 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-69315-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)