Optimal Transportation Networks Models and Theory /

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bernot, Marc (Συγγραφέας), Caselles, Vicent (Συγγραφέας), Morel, Jean-Michel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1955
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction: The Models
  • The Mathematical Models
  • Traffic Plans
  • The Structure of Optimal Traffic Plans
  • Operations on Traffic Plans
  • Traffic Plans and Distances between Measures
  • The Tree Structure of Optimal Traffic Plans and their Approximation
  • Interior and Boundary Regularity
  • The Equivalence of Various Models
  • Irrigability and Dimension
  • The Landscape of an Optimal Pattern
  • The Gilbert-Steiner Problem
  • Dirac to Lebesgue Segment: A Case Study
  • Application: Embedded Irrigation Networks
  • Open Problems.