Parameter Setting in Evolutionary Algorithms

One of the main difficulties of applying an evolutionary algorithm (or, as a matter of fact, any heuristic method) to a given problem is to decide on an appropriate set of parameter values. Typically these are specified before the algorithm is run and include population size, selection rate, operato...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lobo, Fernando G. (Επιμελητής έκδοσης), Lima, Cláudio F. (Επιμελητής έκδοσης), Michalewicz, Zbigniew (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Studies in Computational Intelligence, 54
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Parameter Setting in EAs: a 30 Year Perspective
  • Parameter Control in Evolutionary Algorithms
  • Self-Adaptation in Evolutionary Algorithms
  • Adaptive Strategies for Operator Allocation
  • Sequential Parameter Optimization Applied to Self-Adaptation for Binary-Coded Evolutionary Algorithms
  • Combining Meta-EAs and Racing for Difficult EA Parameter Tuning Tasks
  • Genetic Programming: Parametric Analysis of Structure Altering Mutation Techniques
  • Parameter Sweeps for Exploring Parameter Spaces of Genetic and Evolutionary Algorithms
  • Adaptive Population Sizing Schemes in Genetic Algorithms
  • Population Sizing to Go: Online Adaptation Using Noise and Substructural Measurements
  • Parameter-less Hierarchical Bayesian Optimization Algorithm
  • Evolutionary Multi-Objective Optimization Without Additional Parameters
  • Parameter Setting in Parallel Genetic Algorithms
  • Parameter Control in Practice
  • Parameter Adaptation for GP Forecasting Applications.