Large-Time Behavior of Solutions of Linear Dispersive Equations

This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estim...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dix, Daniel B. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1668
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03068nam a2200529 4500
001 978-3-540-69545-5
003 DE-He213
005 20191024141558.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540695455  |9 978-3-540-69545-5 
024 7 |a 10.1007/BFb0093368  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Dix, Daniel B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Large-Time Behavior of Solutions of Linear Dispersive Equations  |h [electronic resource] /  |c by Daniel B. Dix. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a XIV, 203 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1668 
505 0 |a Laplace expansions, outer regions -- Expansion in the inner region, Matching -- Uniformly Valid Expansions for large time -- Special Results for Special Cases -- Applications: Self-similar asymptotic approximations; Sharp Ls decay estimates, Smoothing Effects; Asymptotic balance for large time; Asymptotic behavior for large x -- Reference -- Subject Index. 
520 |a This book studies the large-time asymptotic behavior of solutions of the pure initial value problem for linear dispersive equations with constant coefficients and homogeneous symbols in one space dimension. Complete matched and uniformly-valid asymptotic expansions are obtained and sharp error estimates are proved. Using the method of steepest descent much new information on the regularity and spatial asymptotics of the solutions are also obtained. Applications to nonlinear dispersive equations are discussed. This monograph is intended for researchers and graduate students of partial differential equations. Familiarity with basic asymptotic, complex and Fourier analysis is assumed. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Fourier analysis. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12007 
650 2 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662201893 
776 0 8 |i Printed edition:  |z 9783540634348 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1668 
856 4 0 |u https://doi.org/10.1007/BFb0093368  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)