Link Theory in Manifolds

Any topological theory of knots and links should be based on simple ideas of intersection and linking. In this book, a general theory of link bordism in manifolds and universal constructions of linking numbers in oriented 3-manifolds are developed. In this way, classical concepts of link theory in t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kaiser, Uwe (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1669
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02919nam a2200529 4500
001 978-3-540-69546-2
003 DE-He213
005 20191024141555.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540695462  |9 978-3-540-69546-2 
024 7 |a 10.1007/BFb0092686  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Kaiser, Uwe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Link Theory in Manifolds  |h [electronic resource] /  |c by Uwe Kaiser. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a XIV, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1669 
505 0 |a Link bordism in manifolds -- Enumeration of link bordism in 3-manifolds -- Linking number maps -- Surface structures for links in 3-manifolds -- Link invariants in Betti-trivial 3-manifolds -- Link characteristic and band-operations in Betti-trivial 3-manifolds -- 3-dimensional Betti-trivial submanifolds. 
520 |a Any topological theory of knots and links should be based on simple ideas of intersection and linking. In this book, a general theory of link bordism in manifolds and universal constructions of linking numbers in oriented 3-manifolds are developed. In this way, classical concepts of link theory in the 3-spheres are generalized to a certain class of oriented 3-manifolds (submanifolds of rational homology 3-spheres). The techniques needed are described in the book but basic knowledge in topology and algebra is assumed. The book should be of interst to those working in topology, in particular knot theory and low-dimensional topology. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Topology. 
650 1 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
650 2 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662192184 
776 0 8 |i Printed edition:  |z 9783540634355 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1669 
856 4 0 |u https://doi.org/10.1007/BFb0092686  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)