Green Functors and G-sets

This book provides a definition of Green functors for a finite group G, and of modules over it, in terms of the category of finite G-sets. Some classical constructions, such as the associated categroy or algebra, have a natural interpretation in that framework. Many notions of ring theory can be ext...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bouc, serge (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1671
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02837nam a2200493 4500
001 978-3-540-69596-7
003 DE-He213
005 20190618141552.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540695967  |9 978-3-540-69596-7 
024 7 |a 10.1007/BFb0095821  |2 doi 
040 |d GrThAP 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 512.66  |2 23 
100 1 |a Bouc, serge.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Green Functors and G-sets  |h [electronic resource] /  |c by serge Bouc. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a VII, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1671 
505 0 |a Mackey functors -- Green functors -- The category associated to a green functor -- The algebra associated to a green functor -- Morita equivalence and relative projectivity -- Construction of green functors -- A morita theory -- Composition -- Adjoint constructions -- Adjunction and green functors -- The simple modules -- Centres. 
520 |a This book provides a definition of Green functors for a finite group G, and of modules over it, in terms of the category of finite G-sets. Some classical constructions, such as the associated categroy or algebra, have a natural interpretation in that framework. Many notions of ring theory can be extended to Green functors (opposite Green functor, bimodules, Morita theory, simple modules, centres,...). There are moreover connections between Green functors for different groups, given by functors associated to bisets. Intended for researchers and students in representation theory of finite groups it requires only basic algebra and category theory, though knowledge of the classical examples of Mackey functors is probably preferable. 
650 0 |a K-theory. 
650 0 |a Group theory. 
650 1 4 |a K-Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11086 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662201817 
776 0 8 |i Printed edition:  |z 9783540635505 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1671 
856 4 0 |u https://doi.org/10.1007/BFb0095821  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)