Algorithmic Learning Theory 8th International Workshop, ALT '97, Sendai, Japan, October 6-8, 1997. Proceedings /

This book constitutes the refereed proceedings of the 8th International Workshop on Algorithmic Learning Theory, ALT'97, held in Sendai, Japan, in October 1997. The volume presents 26 revised full papers selected from 42 submissions. Also included are three invited papers by leading researchers...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Li, Ming (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Maruoka, Akira (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Artificial Intelligence ; 1316
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04440nam a2200505 4500
001 978-3-540-69602-5
003 DE-He213
005 20191027201625.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540696025  |9 978-3-540-69602-5 
024 7 |a 10.1007/3-540-63577-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Algorithmic Learning Theory  |h [electronic resource] :  |b 8th International Workshop, ALT '97, Sendai, Japan, October 6-8, 1997. Proceedings /  |c edited by Ming Li, Akira Maruoka. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a XIV, 470 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 1316 
505 0 |a Program error detection/correction: Turning PAC learning into Perfect learning -- Team learning as a game -- Inferability of recursive real-valued functions -- Learning of R.E. Languages from good examples -- Identifiability of subspaces and homomorphic images of zero-reversible languages -- On exploiting knowledge and concept use in learning theory -- Partial occam's razor and its applications -- Derandomized learning of boolean functions -- Learning DFA from simple examples -- PAC learning under helpful distributions -- PAC learning using Nadaraya-Watson estimator based on orthonormal systems -- Monotone extensions of boolean data sets -- Classical Brouwer-Heyting-Kolmogorov interpretation -- Inferring a system from examples with time passage -- Polynomial time inductive inference of regular term tree languages from positive data -- Synthesizing noise-tolerant language learners -- Effects of Kolmogorov complexity present in inductive inference as well -- Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries -- Oracles in ? 2 p are sufficient for exact learning -- Exact learning via teaching assistants (Extended abstract) -- An efficient exact learning algorithm for ordered binary decision diagrams -- Probability theory for the Brier game -- Learning and revising theories in noisy domains -- A note on a scale-sensitive dimension of linear bounded functionals in Banach Spaces -- On the relevance of time in neural computation and learning -- A simple algorithm for predicting nearly as well as the best pruning labeled with the best prediction values of a decision tree -- Learning disjunctions of features -- Learning simple deterministic finite-memory automata -- Learning acyclic first-order horn sentences from entailment -- On learning disjunctions of zero-one threshold functions with queries. 
520 |a This book constitutes the refereed proceedings of the 8th International Workshop on Algorithmic Learning Theory, ALT'97, held in Sendai, Japan, in October 1997. The volume presents 26 revised full papers selected from 42 submissions. Also included are three invited papers by leading researchers. Among the topics addressed are PAC learning, learning algorithms, inductive learning, inductive inference, learning from examples, game-theoretical aspects, decision procedures, language learning, neural algorithms, and various other aspects of computational learning theory. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical logic. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
700 1 |a Li, Ming.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maruoka, Akira.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662203767 
776 0 8 |i Printed edition:  |z 9783540635772 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 1316 
856 4 0 |u https://doi.org/10.1007/3-540-63577-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)