Algebraic Homogeneous Spaces and Invariant Theory

The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive grou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grosshans, Frank D. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1673
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02807nam a2200529 4500
001 978-3-540-69617-9
003 DE-He213
005 20191024132709.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540696179  |9 978-3-540-69617-9 
024 7 |a 10.1007/BFb0093525  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Grosshans, Frank D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Homogeneous Spaces and Invariant Theory  |h [electronic resource] /  |c by Frank D. Grosshans. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a VIII, 152 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1673 
505 0 |a Observable subgroups -- The transfer principle -- Invariants of maximal unipotent subgroups -- Complexity -- Errata. 
520 |a The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics. 
650 0 |a Group theory. 
650 0 |a Algebraic geometry. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11094 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662196458 
776 0 8 |i Printed edition:  |z 9783540636281 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1673 
856 4 0 |u https://doi.org/10.1007/BFb0093525  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)