Linear Pro-p-Groups of Finite Width

The normal subgroup structure of maximal pro-p-subgroups of rational points of algebraic groups over the p-adics and their characteristic p analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become pe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Klaas, Gundel (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Leedham-Green, Charles R. (http://id.loc.gov/vocabulary/relators/aut), Plesken, Wilhelm (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1674
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02952nam a2200493 4500
001 978-3-540-69623-0
003 DE-He213
005 20190618141733.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540696230  |9 978-3-540-69623-0 
024 7 |a 10.1007/BFb0094086  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Klaas, Gundel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear Pro-p-Groups of Finite Width  |h [electronic resource] /  |c by Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a VIII, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1674 
505 0 |a Elementary properties of width -- p-adically simple groups -- Periodicity -- Chevalley groups -- Some classical groups -- Some thin groups -- Algorithms on fields -- Fields of small degree -- Algorithm for finding a filtration and the obliquity -- The theory behind the tables -- Tables -- Uncountably many just infinite pro-p-groups of finite width -- Some open problems. 
520 |a The normal subgroup structure of maximal pro-p-subgroups of rational points of algebraic groups over the p-adics and their characteristic p analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and p are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions. 
650 0 |a Group theory. 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
700 1 |a Leedham-Green, Charles R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Plesken, Wilhelm.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662165942 
776 0 8 |i Printed edition:  |z 9783540636434 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1674 
856 4 0 |u https://doi.org/10.1007/BFb0094086  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)