Probability Theory of Classical Euclidean Optimization Problems
This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random gr...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
1998.
|
Έκδοση: | 1st ed. 1998. |
Σειρά: | Lecture Notes in Mathematics,
1675 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Περίληψη: | This monograph describes the stochastic behavior of the solutions to the classic problems of Euclidean combinatorial optimization, computational geometry, and operations research. Using two-sided additivity and isoperimetry, it formulates general methods describing the total edge length of random graphs in Euclidean space. The approach furnishes strong laws of large numbers, large deviations, and rates of convergence for solutions to the random versions of various classic optimization problems, including the traveling salesman, minimal spanning tree, minimal matching, minimal triangulation, two-factor, and k-median problems. Essentially self-contained, this monograph may be read by probabilists, combinatorialists, graph theorists, and theoretical computer scientists. |
---|---|
Φυσική περιγραφή: | X, 154 p. online resource. |
ISBN: | 9783540696278 |
ISSN: | 0075-8434 ; |
DOI: | 10.1007/BFb0093472 |