Moduli of Supersingular Abelian Varieties

Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Li, Ke-Zheng (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Oort, Frans (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1998.
Έκδοση:1st ed. 1998.
Σειρά:Lecture Notes in Mathematics, 1680
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02992nam a2200481 4500
001 978-3-540-69666-7
003 DE-He213
005 20191024132921.0
007 cr nn 008mamaa
008 121227s1998 gw | s |||| 0|eng d
020 |a 9783540696667  |9 978-3-540-69666-7 
024 7 |a 10.1007/BFb0095931  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Li, Ke-Zheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Moduli of Supersingular Abelian Varieties  |h [electronic resource] /  |c by Ke-Zheng Li, Frans Oort. 
250 |a 1st ed. 1998. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1998. 
300 |a IX, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1680 
505 0 |a Supersingular abelian varieties -- Some prerequisites about group schemes -- Flag type quotients -- Main results on S g,1 -- Prerequisites about Dieudonné modules -- PFTQs of Dieudonné modules over W -- Moduli of rigid PFTQs of Dieudonné modules -- Some class numbers -- Examples on S g,1 -- Main results on S g,d -- Proofs of the propositions on FTQs -- Examples on S g,d (d>1) -- A scheme-theoretic definition of supersingularity. 
520 |a Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort). 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
700 1 |a Oort, Frans.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662211793 
776 0 8 |i Printed edition:  |z 9783540639237 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1680 
856 4 0 |u https://doi.org/10.1007/BFb0095931  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)