|
|
|
|
LEADER |
02992nam a2200481 4500 |
001 |
978-3-540-69666-7 |
003 |
DE-He213 |
005 |
20191024132921.0 |
007 |
cr nn 008mamaa |
008 |
121227s1998 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540696667
|9 978-3-540-69666-7
|
024 |
7 |
|
|a 10.1007/BFb0095931
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA564-609
|
072 |
|
7 |
|a PBMW
|2 bicssc
|
072 |
|
7 |
|a MAT012010
|2 bisacsh
|
072 |
|
7 |
|a PBMW
|2 thema
|
082 |
0 |
4 |
|a 516.35
|2 23
|
100 |
1 |
|
|a Li, Ke-Zheng.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Moduli of Supersingular Abelian Varieties
|h [electronic resource] /
|c by Ke-Zheng Li, Frans Oort.
|
250 |
|
|
|a 1st ed. 1998.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 1998.
|
300 |
|
|
|a IX, 116 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1680
|
505 |
0 |
|
|a Supersingular abelian varieties -- Some prerequisites about group schemes -- Flag type quotients -- Main results on S g,1 -- Prerequisites about Dieudonné modules -- PFTQs of Dieudonné modules over W -- Moduli of rigid PFTQs of Dieudonné modules -- Some class numbers -- Examples on S g,1 -- Main results on S g,d -- Proofs of the propositions on FTQs -- Examples on S g,d (d>1) -- A scheme-theoretic definition of supersingularity.
|
520 |
|
|
|a Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort).
|
650 |
|
0 |
|a Algebraic geometry.
|
650 |
1 |
4 |
|a Algebraic Geometry.
|0 http://scigraph.springernature.com/things/product-market-codes/M11019
|
700 |
1 |
|
|a Oort, Frans.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662211793
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540639237
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1680
|
856 |
4 |
0 |
|u https://doi.org/10.1007/BFb0095931
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-LNM
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|