The Dynamical System Generated by the 3n+1 Function

The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wirsching, Günther J. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1998.
Έκδοση:1st ed. 1998.
Σειρά:Lecture Notes in Mathematics, 1681
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02598nam a2200493 4500
001 978-3-540-69677-3
003 DE-He213
005 20191026131439.0
007 cr nn 008mamaa
008 121227s1998 gw | s |||| 0|eng d
020 |a 9783540696773  |9 978-3-540-69677-3 
024 7 |a 10.1007/BFb0095985  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Wirsching, Günther J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Dynamical System Generated by the 3n+1 Function  |h [electronic resource] /  |c by Günther J. Wirsching. 
250 |a 1st ed. 1998. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1998. 
300 |a VIII, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1681 
505 0 |a Some ideas around 3n+1 iterations -- Analysis of the Collatz graph -- 3-adic averages of counting functions -- An asymptotically homogeneous Markov chain -- Mixing and predecessor density. 
520 |a The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focus of the book are 3n+1 predecessor sets. These are analyzed using, e.g., elementary number theory, combinatorics, asymptotic analysis, and abstract measure theory. The book is written for any mathematician interested in the 3n+1 problem, and in the wealth of mathematical ideas employed to attack it. 
650 0 |a Number theory. 
650 0 |a Computers. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Theory of Computation.  |0 http://scigraph.springernature.com/things/product-market-codes/I16005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662175095 
776 0 8 |i Printed edition:  |z 9783540639701 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1681 
856 4 0 |u https://doi.org/10.1007/BFb0095985  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)