Matrix Convolution Operators on Groups

In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chu, Cho-Ho (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 1956
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02891nam a22005775i 4500
001 978-3-540-69798-5
003 DE-He213
005 20151204164036.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540697985  |9 978-3-540-69798-5 
024 7 |a 10.1007/978-3-540-69798-5  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Chu, Cho-Ho.  |e author. 
245 1 0 |a Matrix Convolution Operators on Groups  |h [electronic resource] /  |c by Cho-Ho Chu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a IX, 114 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1956 
505 0 |a Lebesgue Spaces of Matrix Functions -- Matrix Convolution Operators -- Convolution Semigroups. 
520 |a In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions. 
650 0 |a Mathematics. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Operator theory. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Non-associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540697978 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1956 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-69798-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)