Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties
In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic p...
| Κύριοι συγγραφείς: | , |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2008.
|
| Σειρά: | Lecture Notes in Mathematics,
1959 |
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
| Περίληψη: | In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0. |
|---|---|
| Φυσική περιγραφή: | X, 272 p. online resource. |
| ISBN: | 9783540705659 |
| ISSN: | 0075-8434 ; |