Soft Computing in Industrial Applications Recent Trends /

Soft Computing admits approximate reasoning, imprecision, uncertainty and partial truth in order to mimic aspects of the remarkable human capability of making decisions in real-life and ambiguous environments. "Soft Computing in Industrial Applications" contains a collection of papers that...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Saad, Ashraf (Επιμελητής έκδοσης), Dahal, Keshav (Επιμελητής έκδοσης), Sarfraz, Muhammad (Επιμελητής έκδοσης), Roy, Rajkumar (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Advances in Soft Computing, 39
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Keynote
  • Hybrid Dynamic Systems in an Industry Design Application
  • I: Soft Computing in Computer Graphics, Imaging and Vision
  • Object Recognition Using Particle Swarm Optimization on Fourier Descriptors
  • Gestix: A Doctor-Computer Sterile Gesture Interface for Dynamic Environments
  • Differential Evolution for the Registration of Remotely Sensed Images
  • Geodesic Distance Based Fuzzy Clustering
  • II: Control Systems
  • Stability Analysis of the Simplest Takagi-Sugeno Fuzzy Control System Using Popov Criterion
  • Identification of an Experimental Process by B-Spline Neural Network Using Improved Differential Evolution Training
  • Applying Particle Swarm Optimization to Adaptive Controller
  • B-Spline Neural Network Using an Artificial Immune Network Applied to Identification of a Ball-and-Tube Prototype
  • III: Pattern Recognition
  • Pattern Recognition for Industrial Security Using the Fuzzy Sugeno Integral and Modular Neural Networks
  • Application of a GA/Bayesian Filter-Wrapper Feature Selection Method to Classification of Clinical Depression from Speech Data
  • Comparison of PSO-Based Optimized Feature Computation for Automated Configuration of Multi-sensor Systems
  • Evaluation of Objective Features for Classification of Clinical Depression in Speech by Genetic Programming
  • A Computationally Efficient SUPANOVA: Spline Kernel Based Machine Learning Tool
  • IV: Classification
  • Multiobjective Genetic Programming Feature Extraction with Optimized Dimensionality
  • A Cooperative Learning Model for the Fuzzy ARTMAP-Dynamic Decay Adjustment Network with the Genetic Algorithm
  • A Modified Fuzzy Min-Max Neural Network and Its Application to Fault Classification
  • AFC-ECG: An Adaptive Fuzzy ECG Classifier
  • A Self-organizing Fuzzy Neural Networks
  • V: Soft Computing for Modeling, Optimization and Information Processing
  • A Particle Swarm Approach to Quadratic Assignment Problems
  • Population-Based Incremental Learning for Multiobjective Optimisation
  • Combining of Differential Evolution and Implicit Filtering Algorithm Applied to Electromagnetic Design Optimization
  • A Layered Matrix Cascade Genetic Algorithm and Particle Swarm Optimization Approach to Thermal Power Generation Scheduling
  • Differential Evolution for Binary Encoding
  • VI: Soft Computing in Civil Engineering and Other Applications
  • Prioritization of Pavement Stretches Using Fuzzy MCDM Approach – A Case Study
  • A Memetic Algorithm for Water Distribution Network Design
  • Neural Network Models for Air Quality Prediction: A Comparative Study
  • Recessive Trait Cross over Approach of GAs Population Inheritance for Evolutionary Optimization
  • Automated Prediction of Solar Flares Using Neural Networks and Sunspots Associations.