|
|
|
|
LEADER |
03084nam a2200553 4500 |
001 |
978-3-540-70746-2 |
003 |
DE-He213 |
005 |
20191024192313.0 |
007 |
cr nn 008mamaa |
008 |
121227s2004 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540707462
|9 978-3-540-70746-2
|
024 |
7 |
|
|a 10.1007/b97327
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA299.6-433
|
072 |
|
7 |
|a PBK
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a PBK
|2 thema
|
082 |
0 |
4 |
|a 515
|2 23
|
100 |
1 |
|
|a Jefferies, Brian R.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Spectral Properties of Noncommuting Operators
|h [electronic resource] /
|c by Brian R. Jefferies.
|
250 |
|
|
|a 1st ed. 2004.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2004.
|
300 |
|
|
|a VII, 184 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1843
|
505 |
0 |
|
|a Introduction -- Weyl Calculus -- Clifford Analysis -- Functional Calculus for Noncommuting Operators -- The Joint Spectrum of Matrices -- The Monogenic Calculus for Sectorial Operators -- Feynman's Operational Calculus -- References -- Index.
|
520 |
|
|
|a Forming functions of operators is a basic task of many areas of linear analysis and quantum physics. Weyl's functional calculus, initially applied to the position and momentum operators of quantum mechanics, also makes sense for finite systems of selfadjoint operators. By using the Cauchy integral formula available from Clifford analysis, the book examines how functions of a finite collection of operators can be formed when the Weyl calculus is not defined. The technique is applied to the determination of the support of the fundamental solution of a symmetric hyperbolic system of partial differential equations and to proving the boundedness of the Cauchy integral operator on a Lipschitz surface.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
0 |
|a Analysis (Mathematics).
|
650 |
|
0 |
|a Operator theory.
|
650 |
|
0 |
|a Functions of complex variables.
|
650 |
|
0 |
|a Fourier analysis.
|
650 |
1 |
4 |
|a Analysis.
|0 http://scigraph.springernature.com/things/product-market-codes/M12007
|
650 |
2 |
4 |
|a Operator Theory.
|0 http://scigraph.springernature.com/things/product-market-codes/M12139
|
650 |
2 |
4 |
|a Functions of a Complex Variable.
|0 http://scigraph.springernature.com/things/product-market-codes/M12074
|
650 |
2 |
4 |
|a Fourier Analysis.
|0 http://scigraph.springernature.com/things/product-market-codes/M12058
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540219231
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662172308
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1843
|
856 |
4 |
0 |
|u https://doi.org/10.1007/b97327
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-LNM
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|