Spectral Properties of Noncommuting Operators

Forming functions of operators is a basic task of many areas of linear analysis and quantum physics. Weyl's functional calculus, initially applied to the position and momentum operators of quantum mechanics, also makes sense for finite systems of selfadjoint operators. By using the Cauchy integ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jefferies, Brian R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1843
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03084nam a2200553 4500
001 978-3-540-70746-2
003 DE-He213
005 20191024192313.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540707462  |9 978-3-540-70746-2 
024 7 |a 10.1007/b97327  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Jefferies, Brian R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Properties of Noncommuting Operators  |h [electronic resource] /  |c by Brian R. Jefferies. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a VII, 184 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1843 
505 0 |a Introduction -- Weyl Calculus -- Clifford Analysis -- Functional Calculus for Noncommuting Operators -- The Joint Spectrum of Matrices -- The Monogenic Calculus for Sectorial Operators -- Feynman's Operational Calculus -- References -- Index. 
520 |a Forming functions of operators is a basic task of many areas of linear analysis and quantum physics. Weyl's functional calculus, initially applied to the position and momentum operators of quantum mechanics, also makes sense for finite systems of selfadjoint operators. By using the Cauchy integral formula available from Clifford analysis, the book examines how functions of a finite collection of operators can be formed when the Weyl calculus is not defined. The technique is applied to the determination of the support of the fundamental solution of a symmetric hyperbolic system of partial differential equations and to proving the boundedness of the Cauchy integral operator on a Lipschitz surface. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Operator theory. 
650 0 |a Functions of complex variables. 
650 0 |a Fourier analysis. 
650 1 4 |a Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12007 
650 2 4 |a Operator Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12139 
650 2 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540219231 
776 0 8 |i Printed edition:  |z 9783662172308 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1843 
856 4 0 |u https://doi.org/10.1007/b97327  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)