A Concise Course on Stochastic Partial Differential Equations

These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the cas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Prévôt, Claudia (Συγγραφέας), Röckner, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1905
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03179nam a22005175i 4500
001 978-3-540-70781-3
003 DE-He213
005 20151204164822.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540707813  |9 978-3-540-70781-3 
024 7 |a 10.1007/978-3-540-70781-3  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Prévôt, Claudia.  |e author. 
245 1 2 |a A Concise Course on Stochastic Partial Differential Equations  |h [electronic resource] /  |c by Claudia Prévôt, Michael Röckner. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a VI, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1905 
505 0 |a Motivation, Aims and Examples -- Stochastic Integral in Hilbert spaces -- Stochastic Differential Equations in Finite Dimensions -- A Class of Stochastic Differential Equations in Banach Spaces -- Appendices: The Bochner Integral -- Nuclear and Hilbert-Schmidt Operators -- Pseudo Invers of Linear Operators -- Some Tools from Real Martingale Theory -- Weak and Strong Solutions: the Yamada-Watanabe Theorem -- Strong, Mild and Weak Solutions. 
520 |a These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Röckner, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540707806 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1905 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-70781-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)