Rough – Granular Computing in Knowledge Discovery and Data Mining

The book "Rough-Granular Computing in Knowledge Discovery and Data Mining" written by Professor Jaroslaw Stepaniuk is dedicated to methods based on a combination of the following three closely related and rapidly growing areas: granular computing, rough sets, and knowledge discovery and da...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stepaniuk, Jarosław (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Computational Intelligence, 152
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03479nam a22004935i 4500
001 978-3-540-70801-8
003 DE-He213
005 20151204170055.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540708018  |9 978-3-540-70801-8 
024 7 |a 10.1007/978-3-540-70801-8  |2 doi 
040 |d GrThAP 
050 4 |a TA345-345.5 
072 7 |a UGC  |2 bicssc 
072 7 |a COM007000  |2 bisacsh 
082 0 4 |a 620.00420285  |2 23 
100 1 |a Stepaniuk, Jarosław.  |e author. 
245 1 0 |a Rough – Granular Computing in Knowledge Discovery and Data Mining  |h [electronic resource] /  |c by Jarosław Stepaniuk. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 162 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 152 
505 0 |a I: Rough Set Methodology -- Rough Sets -- Data Reduction -- II: Classification and Clustering -- Selected Classification Methods -- Selected Clustering Methods -- A Medical Case Study -- III: Complex Data and Complex Concepts -- Mining Knowledge from Complex Data -- Complex Concept Approximations -- IV: Conclusions, Bibliography and Further Readings -- Concluding Remarks. 
520 |a The book "Rough-Granular Computing in Knowledge Discovery and Data Mining" written by Professor Jaroslaw Stepaniuk is dedicated to methods based on a combination of the following three closely related and rapidly growing areas: granular computing, rough sets, and knowledge discovery and data mining (KDD). In the book, the KDD foundations based on the rough set approach and granular computing are discussed together with illustrative applications. In searching for relevant patterns or in inducing (constructing) classifiers in KDD, different kinds of granules are modeled. In this modeling process, granules called approximation spaces play a special rule. Approximation spaces are defined by neighborhoods of objects and measures between sets of objects. In the book, the author underlines the importance of approximation spaces in searching for relevant patterns and other granules on dfferent levels of modeling for compound concept approximations. Calculi on such granules are used for modeling computations on granules in searching for target (sub) optimal granules and their interactions on different levels of hierarchical modeling. The methods based on the combination of granular computing, the rough and fuzzy set approaches allow for an effcient construction of the high quality approximation of compound concepts. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer-aided engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540708001 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 152 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-70801-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)