New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems

0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theore...

Full description

Bibliographic Details
Main Author: Basin, Michael (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Series:Lecture Notes in Control and Information Sciences, 380
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03343nam a22004935i 4500
001 978-3-540-70803-2
003 DE-He213
005 20151204175712.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540708032  |9 978-3-540-70803-2 
024 7 |a 10.1007/978-3-540-70803-2  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Basin, Michael.  |e author. 
245 1 0 |a New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems  |h [electronic resource] /  |c by Michael Basin. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XXIV, 208 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 380 
505 0 |a Optimal Filtering for Polynomial Systems -- Further Results: Optimal Identification and Control Problems -- Optimal Filtering Problems for Time-Delay Systems -- Optimal Control Problems for Time-Delay Systems -- Sliding Mode Applications to Optimal Filtering and Control. 
520 |a 0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a ?nite-dimensional closed system of ?ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy ?lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ?ltering equations. However, the optimal nonlinear ?nite-dimensional ?lter can be - tained in some other cases, if, for example, the state vector can take only a ?nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis?es the Riccati equation df /dx + f = x (see [15]). The complete classi?cation of the “general situation” cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear ?nite-dimensional ?lter exists, is given in [95]. 
650 0 |a Engineering. 
650 0 |a System theory. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Systems Theory, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540708025 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 380 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-70803-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)