Dynamical Vision ICCV 2005 and ECCV 2006 Workshops, WDV 2005 and WDV 2006, Beijing, China, October 21, 2005, Graz, Austria, May 13, 2006. Revised Papers /

Classical multiple-view geometry studies the reconstruction of a static scene - served by a rigidly moving camera. However, in many real-world applications the scene may undergo much more complex dynamical changes. For instance, the scene may consist of multiple moving objects (e.g., a tra?c scene)...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Vidal, René (Επιμελητής έκδοσης), Heyden, Anders (Επιμελητής έκδοσης), Ma, Yi (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Computer Science, 4358
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05101nam a22005895i 4500
001 978-3-540-70932-9
003 DE-He213
005 20151204162250.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540709329  |9 978-3-540-70932-9 
024 7 |a 10.1007/978-3-540-70932-9  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Dynamical Vision  |h [electronic resource] :  |b ICCV 2005 and ECCV 2006 Workshops, WDV 2005 and WDV 2006, Beijing, China, October 21, 2005, Graz, Austria, May 13, 2006. Revised Papers /  |c edited by René Vidal, Anders Heyden, Yi Ma. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a IX, 329 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 4358 
505 0 |a Motion Segmentation and Estimation -- The Space of Multibody Fundamental Matrices: Rank, Geometry and Projection -- Direct Segmentation of Multiple 2-D Motion Models of Different Types -- Motion Segmentation Using an Occlusion Detector -- Robust 3D Segmentation of Multiple Moving Objects Under Weak Perspective -- Nonparametric Estimation of Multiple Structures with Outliers -- Human Motion Analysis, Tracking and Recognition -- Articulated Motion Segmentation Using RANSAC with Priors -- Articulated-Body Tracking Through Anisotropic Edge Detection -- Homeomorphic Manifold Analysis: Learning Decomposable Generative Models for Human Motion Analysis -- View-Invariant Modeling and Recognition of Human Actions Using Grammars -- Dynamic Textures -- Segmenting Dynamic Textures with Ising Descriptors, ARX Models and Level Sets -- Spatial Segmentation of Temporal Texture Using Mixture Linear Models -- Online Video Registration of Dynamic Scenes Using Frame Prediction -- Dynamic Texture Recognition Using Volume Local Binary Patterns -- Motion Tracking -- A Rao-Blackwellized Parts-Constellation Tracker -- Bayesian Tracking with Auxiliary Discrete Processes. Application to Detection and Tracking of Objects with Occlusions -- Tracking of Multiple Objects Using Optical Flow Based Multiscale Elastic Matching -- Real-Time Tracking with Classifiers -- Rigid and Non-rigid Motion Analysis -- A Probabilistic Framework for Correspondence and Egomotion -- Estimating the Pose of a 3D Sensor in a Non-rigid Environment -- A Batch Algorithm for Implicit Non-rigid Shape and Motion Recovery -- Motion Filtering and Vision-Based Control -- Using a Connected Filter for Structure Estimation in Perspective Systems -- Recursive Structure from Motion Using Hybrid Matching Constraints with Error Feedback -- Force/Vision Based Active Damping Control of Contact Transition in Dynamic Environments -- Segmentation and Guidance of Multiple Rigid Objects for Intra-operative Endoscopic Vision. 
520 |a Classical multiple-view geometry studies the reconstruction of a static scene - served by a rigidly moving camera. However, in many real-world applications the scene may undergo much more complex dynamical changes. For instance, the scene may consist of multiple moving objects (e.g., a tra?c scene) or arti- lated motions (e.g., a walking human) or even non-rigid dynamics (e.g., smoke, ?re, or a waterfall). In addition, some applications may require interaction with the scene through a dynamical system (e.g., vision-guided robot navigation and coordination). To study the problem of reconstructing dynamical scenes, many new al- braic, geometric, statistical, and computational tools have recently emerged in computer vision, computer graphics, image processing, and vision-based c- trol. The goal of the International Workshop on Dynamical Vision (WDV) is to converge di?erent aspects of the research on dynamical vision and to identify common mathematical problems, models, and methods for future research in this emerging and active area. 
650 0 |a Computer science. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computer Graphics. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
700 1 |a Vidal, René.  |e editor. 
700 1 |a Heyden, Anders.  |e editor. 
700 1 |a Ma, Yi.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540709312 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 4358 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-70932-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)