Optimal Transport Old and New /

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. Th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Villani, Cédric (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 338
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Couplings and changes of variables
  • Three examples of coupling techniques
  • The founding fathers of optimal transport
  • Qualitative description of optimal transport
  • Basic properties
  • Cyclical monotonicity and Kantorovich duality
  • The Wasserstein distances
  • Displacement interpolation
  • The Monge—Mather shortening principle
  • Solution of the Monge problem I: global approach
  • Solution of the Monge problem II: Local approach
  • The Jacobian equation
  • Smoothness
  • Qualitative picture
  • Optimal transport and Riemannian geometry
  • Ricci curvature
  • Otto calculus
  • Displacement convexity I
  • Displacement convexity II
  • Volume control
  • Density control and local regularity
  • Infinitesimal displacement convexity
  • Isoperimetric-type inequalities
  • Concentration inequalities
  • Gradient flows I
  • Gradient flows II: Qualitative properties
  • Gradient flows III: Functional inequalities
  • Synthetic treatment of Ricci curvature
  • Analytic and synthetic points of view
  • Convergence of metric-measure spaces
  • Stability of optimal transport
  • Weak Ricci curvature bounds I: Definition and Stability
  • Weak Ricci curvature bounds II: Geometric and analytic properties.